Pages

Monday, October 31, 2011

Quantum Teleportation


Quantum teleportation is not the same as the teleportation most of us know from science fiction, where an object (or person) in one place is “beamed up” to another place where a perfect copy is replicated. In quantum teleportation two photons or ions (for example) are entangled in such a way that when the quantum state of one is changed the state of the other also changes, as if the two were still connected. This enables quantum information to be teleported if one of the photons/ions is sent some distance away.
In previous experiments the photons were confined to fiber channels a few hundred meters long to ensure their state remained unchanged, but in the new experiments pairs of photons were entangled and then the higher-energy photon of the pair was sent through a free space channel 16 km long. The researchers, from the University of Science and Technology of China and Tsinghua University in Beijing, found that even at this distance the photon at the receiving end still responded to changes in state of the photon remaining behind. The average fidelity of the teleportation achieved was 89 percent.
The distance of 16 km is greater than the effective aerosphere thickness of 5-10 km, so the group's success could pave the way for experiments between a ground station and a satellite, or two ground stations with a satellite acting as a relay. This means quantum communication applications could be possible on a global scale in the near future.
The public free space channel was at ground level and spanned the 16 km distance between Badaling in Beijing (the teleportation site) and the receiver site at Huailai in Hebei province. Entangled photon pairs were generated at the teleportation site using a semiconductor, a blue laser beam, and a crystal of beta-barium borate (BBO). The pairs of photons were entangled in the spatial modes of photon 1 and polarization modes of photon 2. The research team designed two types of telescopes to serve as optical transmitting and receiving antennas.
The experiments confirm the feasibility of space-based quantum teleportation, and represent a giant leap forward in the development of quantum communication applications.

Sunday, October 16, 2011

Helix Nebula




The composite picture is a seamless blend of ultra-sharp NASA Hubble Space Telescope (HST) images combined with the wide view of the Mosaic Camera on the National Science Foundation's 0.9-meter telescope at Kitt Peak National Observatory, part of the National Optical Astronomy Observatory, near Tucson, Ariz. Astronomers at the Space Telescope Science Institute assembled these images into a mosaic. The mosaic was then blended with a wider photograph taken by the Mosaic Camera. The image shows a fine web of filamentary "bicycle-spoke" features embedded in the colorful red and blue gas ring, which is one of the nearest planetary nebulae to Earth.


Because the nebula is nearby, it appears as nearly one-half the diameter of the full Moon. This required HST astronomers to take several exposures with the Advanced Camera for Surveys to capture most of the Helix. HST views were then blended with a wider photo taken by the Mosaic Camera. The portrait offers a dizzying look down what is actually a trillion-mile-long tunnel of glowing gases. The fluorescing tube is pointed nearly directly at Earth, so it looks more like a bubble than a cylinder. A forest of thousands of comet-like filaments, embedded along the inner rim of the nebula, points back toward the central star, which is a small, super-hot white dwarf.


The tentacles formed when a hot "stellar wind" of gas plowed into colder shells of dust and gas ejected previously by the doomed star. Ground-based telescopes have seen these comet-like filaments for decades, but never before in such detail. The filaments may actually lie in a disk encircling the hot star, like a collar. The radiant tie-die colors correspond to glowing oxygen (blue) and hydrogen and nitrogen (red).


Valuable Hubble observing time became available during the November 2002 Leonid meteor storm. To protect the spacecraft, including HST's precise mirror, controllers turned the aft end into the direction of the meteor stream for about half a day. Fortunately, the Helix Nebula was almost exactly in the opposite direction of the meteor stream, so Hubble used nine orbits to photograph the nebula while it waited out the storm. To capture the sprawling nebula, Hubble had to take nine separate snapshots.


Planetary nebulae like the Helix are sculpted late in a Sun-like star's life by a torrential gush of gases escaping from the dying star. They have nothing to do with planet formation, but got their name because they look like planetary disks when viewed through a small telescope. With higher magnification, the classic "donut-hole" in the middle of a planetary nebula can be resolved. Based on the nebula's distance of 650 light-years, its angular size corresponds to a huge ring with a diameter of nearly 3 light-years. That's approximately three-quarters of the distance between our Sun and the nearest star.


The Helix Nebula is a popular target of amateur astronomers and can be seen with binoculars as a ghostly, greenish cloud in the constellation Aquarius. Larger amateur telescopes can resolve the ring-shaped nebula, but only the largest ground-based telescopes can resolve the radial streaks. After careful analysis, astronomers concluded the nebula really isn't a bubble, but is a cylinder that happens to be pointed toward Earth.

Saturday, October 8, 2011

Heaviest known Blackhole



Seattle — Astronomers led by Karl Gebhardt of The University of Texas at Austin have measured the most massive known black hole in our cosmic neighborhood by combining data from a giant telescope in Hawai'i and a smaller telescope in Texas.
The result is an ironclad mass of 6.6 billion suns for the black hole in the giant elliptical galaxy M87. This enormous mass is the largest ever measured for a black hole using a direct technique. Given its massive size, M87 is the best candidate for future studies to "see" a black hole for the first time, rather than relying on indirect evidence of their existence as astronomers have for decades.
Gebhardt, the Herman and Joan Suit Professor of Astrophysics, led a team of researchers using the 8-meter Gemini North telescope in Hawaii to probe the motions of stars around the black hole in the center of the massive galaxy M87.
The results will be presented in a news conference today at the 217th meeting of the American Astronomical Society in Seattle. Two papers detailing the results will be published soon in The Astrophysical Journal.
University of Texas at Austin graduate student Jeremy Murphy has used the Harlan J. Smith Telescope at the university's McDonald Observatory in West Texas to probe the outer reaches of the galaxy — the so-called "dark halo." The dark halo is a region surrounding the galaxy filled with "dark matter," an unknown type of mass that gives off no light but is detectable by its gravitational effect on other objects.
In order to pin down the black hole's mass conclusively, Gebhardt says, one must account for all the components in the galaxy. Studies of the central and outermost regions of a galaxy are necessary to "see" the influence of the dark halo, the black hole and the stars. But when all of these components are considered together, Gebhardt says, the results on the black hole are definitive, meeting what he calls the "gold standard" for accurately sizing up a black hole.
Gebhardt used the Near-Infrared Field Spectrograph on Gemini to measure the speed of the stars as they orbit the black hole. The study was improved by Gemini's use of "adaptive optics," a system that compensates, in real time, for shifts in the atmosphere that can blur details seen by telescopes on the ground.
Together with the telescope's large collecting area, the adaptive optics system allowed Gebhardt and graduate student Joshua Adams to track the stars at M87's heart with 10 times greater resolution than previous studies.
"The result was only possible by combining the advantages of telescope size and spatial resolution at levels usually restricted to ground and space facilities, respectively," Adams says.
Astronomer Tod Lauer of the National Optical Astronomy Observatory, which was also involved in the Gemini observations, says "our ability to obtain such a robust black hole mass for M87 bodes well for our ongoing efforts to hunt for even larger black holes in galaxies more distant than M87."
Graduate student Jeremy Murphy used a different instrument to track the motions of stars at the outskirts of the galaxy. Studying the stars' movements in these distant regions gives astronomers insight into what the unseen dark matter in the halo is doing. Murphy employed an innovative instrument called VIRUS-P on McDonald Observatory's Harlan J. Smith Telescope.
Studying the distant edges of a galaxy, far from the bright center, is a tricky business, Gebhardt says.
"That has been an enormous struggle for a long time, trying to get what the dark halo is doing at the edge of the galaxy, simply because, when you look there, the stellar light is faint," he says. "This is where the VIRUS-P data comes in, because it can observe such a huge chunk of sky at once."
This means the instrument can add together the faint light from many dim stars and add them together to create one detailed observation. This kind of instrument is called an "integral field unit spectrograph," and VIRUS-P is the world's largest.
"The ability of VIRUS-P to dig deep into the outer halo of M87 and tell us how the stars are moving is impressive," Murphy says. "It has quickly become the leading instrument for this type of work."
The combined Gemini and McDonald data have allowed the team to pinpoint the mass of M87's black hole at 6.6 billion suns. But measuring such a massive black hole is only one step toward a greater goal.
"My ultimate goal is to understand how the stars assembled themselves in a galaxy over time," Gebhardt says.
"How do you make a galaxy? These two datasets probe such an enormous range, in terms of what the mass is in the galaxy. That's the first step to answering this question. It's very hard to understand how the mass accumulates unless you know exactly what's the distribution of mass: how much is in the black hole, how much is in the stars, how much is in the dark halo."
Today's conclusions also hint at another tantalizing possibility for the future: the chance to actually "see" a black hole.
"There's no direct evidence yet that black holes exist," Gebhardt says, "zero, absolutely zero observational evidence. To infer a black hole currently, we choose the 'none of above' option. This is basically because alternative explanations are increasingly being ruled out."
He says the black hole in M87 is so massive that astronomers someday may be able to detect its "event horizon" — the edge of a black hole, beyond which nothing can escape. The event horizon of M87's black hole is about three times larger than the orbit of Pluto — large enough to swallow our solar system whole.
Though the technology does not yet exist, M87's event horizon covers a patch of sky large enough to be imaged by future telescopes. Gebhardt says future astronomers could use a world-wide network of submillimeter telescopes to look for the shadow of the event horizon on a disc of gas that surrounds M87's black hole.